Activation of the calcium-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane
نویسندگان
چکیده
The calcium-sensing receptor (CaSR) belongs to the G-protein-coupled receptor superfamily and plays critical roles in divalent ion homeostasis and cell differentiation. Since extracellular Ca 2+ is essential for the development of stable epithelial tight junctions (TJ), we hypothesized that the CaSR may participate in regulating TJ assembly. We first assessed the expression of the CaSR in Madin-Darby Canine Kidney (MDCK) cells at steady-state and following manipulations that modulate TJ assembly. Next, we examined the effects of CaSR agonists and antagonists on TJ assembly. Immunofluorescence studies indicate that the endogenous CaSR is located at the basolateral pole of MDCK cells. Stable transfection of human CaSR in MDCK cells further reveals that this protein co-distributes with β-catenin on the basolateral membrane. Switching MDCK cells from low calcium media to media containing the normal calcium concentration significantly increases CaSR expression at both the mRNA and protein levels. Exposure of MDCK cells maintained in low-Ca 2+ conditions to the CaSR agonists neomycin, Gd 3+ or R-568 causes the transient relocation of the tight junction components ZO-1 and occludin to sites of cell-cell contact, while inducing no significant changes in the expression of mRNAs encoding junction-associated proteins. CaSR stimulation also increases the interaction between ZO-1 and the F-actin-binding protein, I-afadin. This effect does not involve activation of the AMP-activated protein kinase. In contrast, CaSR inhibition by NPS-2143 significantly decreases ZO-1/I-afadin interaction and reduces ZO-1 deposition at the cell surface following a Ca 2+ switch from 5 µM to 200 µM [Ca 2+ ] e. Pre-exposure of MDCK cells to the cell-permeant Ca 2+ chelator, BAPTA-AM, similarly prevents TJ-assembly caused by CaSR activation. Finally, stable transfection of MDCK cells with a cDNA encoding a human disease-associated gain-of-function mutant form of the CaSR increases these cells' transepithelial electrical resistance in comparison to expression of the wild-type human CaSR. These observations suggest that the CaSR participates in regulating TJ assembly.
منابع مشابه
Activation of the Ca²+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane.
The Ca(2+)-sensing receptor (CaSR) belongs to the G-protein-coupled receptor superfamily and plays essential roles in divalent ion homeostasis and cell differentiation. Because extracellular Ca(2+) is essential for the development of stable epithelial tight junctions (TJs), we hypothesized that the CaSR participates in regulating TJ assembly. We first assessed the expression of the CaSR in Madi...
متن کاملSoluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells
Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...
متن کاملEnterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...
متن کاملThe type 3 inositol 1,4,5-trisphosphate receptor is concentrated at the tight junction level in polarized MDCK cells.
The subcellular localization of inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ signals is important for the activation of many physiological functions. In epithelial cells the spatial distribution of InsP3 receptor is restricted to specific areas, but little is known about the relationship between the receptor's distribution and cell polarity. To investigate this relationship, the best known...
متن کاملPolarized and Non-Poarized Human Oviduct Epithelial Cell Ultrastructure in Vitro
Purpose: This study designed to examine polarized culture of epithelial cells from human ovidutc and their ultrastracture under polarizing condition. Materials and Methods: The human oviduct was obtained from patients having undergone total hysterectomy and epithelial cells were isolated using collagenase type I. The epithelial cells were either cultured on ECM (Extracellular matrix) Gel coate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013